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ABSTRACT One might anticipate that combining plan activity with peri- 

In this paper we introduce a theoretical framework for improved 
processing of peri-movement neural activity for neurally con- 
trolled prosthetic systems through maximum likelihood sequence 
estimation. This framework further suggests a computational 
method for integrating plan and peri-movement neural activity. We 
show that combining plan activity, usually associated with target 
specification, with peri-movement neural activity yields more ac- 
curate estimates of the trajectoryof an arm movement. The effec- 
tiveness of the method is demonstrated in simulation. Performance 
as a function of the specific number of plan and peri-movement 
neurons, as well as other system and design parameters is ana- 
lyzed. The algorithm presented is also compared against previ- 
ous, sample-based approaches, specifically a “point-process’’ filter 
for plan activity and a standard linear filter framework in the peri- 
movement regime. 

1. INTRODUCTION 

An exciting emerging field of signal processing is the decoding of 
neural signals drawn directly from the brain. One of the goals pur- 
sued by researchers in this field is to restore function to patients 
with paralyzed limbs through direct interface with the brain. To 
achieve this end. a signal processing system must be developed 
which correctly decodes neural activity. In this study, using sim- 
ulated data from a reasonable model of the brain, we perform an 
equivalent task, reconstructing arm movements from their corre- 
sponding neural control signals. 

A typical approach to investigating neural coding of motor 
control has been to use microelectrodes to record the activity of an 
ensemble of neurons while also recording the related arm move- 
ments ([I], 121, [3]). Neural activity immediately preceding or 
simultaneous with arm movements is termed “ped-movement.” 
These signals are often highly correlated with electrically mea- 
sured muscle activity, suggesting they correspond to muscle con- 
trol signals. In some brain regions, there is also neural activity long 
before, or even without, actual movement. This is termed “plan” 
activity because of its association with intended movements. In the 
motor and pre-motor cortical regions of the brain, it is common to 
find neural activity of both types. Thus, in a situation where it is 
not possible to pre-select the type of neural activity, it is desirable 
to consider the optimal use of the data gathered, whether plan or 
pen-movement or both. 
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movement activity would improve the accuracy of the recon- 
structed end-point of the movement since the plan activity provides 
additional information as to where the movement should come to 
rest. This study, however, provides an improved structure for de- 
coding peri-movement neural activity and a framework for joint 
decoding of the two types of neural signals, both of which improve 
the accuracy of reconstructed movement trajectories. Simulation 
results for certain classes of movements provide an estimate of sys- 
tem performance, and yield insight into the sensitivity to various 
design parameters. 

2. MODELS 

2.1. Movement Model 

During quick reaching movements. the hand travels to its target in 
stereotyped trajectories. While it is clear that having a target en- 
forces a constraint on the trajectory taken, reasons for this stereo- 
typing are not obvious. In trying to understand the brain’s con- 
trol algorithms, various constraints, e.g. minimizing jerk, torque 
change, transit time, have been proposed, and a recent unifying re- 
sult suggests that the brain optimizes noisy force signals in order 
to minimize end-point error [4]. 

To ease this analysis, we simplify the somewhat complex 
reaching movements observed in nature. First, they are restricted 
to two dimensions - as when a hand moves on the surface of 
a touch screen. Second, movements are fully specified by their 
endpoint (i.e. curved trajectories and multiple speeds are pre- 
cluded). Finally, trajectories are simplified to have the shape re- 
sulting from minimizing the “jerk” (time derivative of accelera- 
tion) of the movement 151. This form is given as 

~ ( x f ,  t )  = xf . (6 ( ;”;) - 15 ( t ) + 10 ( i) ’) (1) 

where xf is the target location relative to the origin and t f  is the 
duration of movement, which is further constrained by a smooth- 
ness parameter, s, as below. 

tf = (6011Xf ID3 s (2) 

The horizontal components of three sample arm trajectories and 
their corresponding time derivatives are shown in Figure 1. 
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Fig. 1. Arm movement trajectories for reaches to three different end points. Movement trajectories are stereotyped with roughly sigmoidal 
position curves (solid lines) and roughly Gaussian velocity curves (dashed lines). Movement trajectories were generated using Equations 
(1) and (2). Also shown are responses of two neurons, one a plan neuron and one a peri-movement neuron associated with a 0.5 m rightward 
arm movement. Five representative repetitions, or trials, appear for each neuron with a vertical line indicating the time the simulated neuron 
emitted an action potential. The dotted line indicates when neural activity was not simulated since it was not needed for the algorithm. Note 
that plan neural activity is present throughout the simulated plan period (-100 to 0 ms) and the peri-movement neural activity increases 
and decreases according to the current arm movement velocity (rightward peri-movement preferred directions chosen to ensure positively 
correlated firing). Spike trains were generated with Equations (5) and (6). 

2.2. Neural Signal Model 

In experimental neurophysiology the standard technique is to 
record the time that a neuron emits a stereotypical electrical pulse, 
referred to as an action potential or "spike." The resulting data 
constitute a point process time series. The bottom panel of Figure 
1 depicts data that might be gathered from two types of neurons 
during repeated reaches following the longest trajectory (0.5 m 
rightward reach) in the figure. It has been shown that modeling 
neurons as firing randomly in time as an inhomogeneous Poisson 
point process captures most of the statistical variation of neural fir- 
ing 161. Thus, the distribution of the number of action potentials, 
k, observed within a time window of duration T is given by 

(4) 

where fj- is the integral of A ( t ) ,  the instantaneous rate of the pro- 
cess, over the time window. In our model, the instantaneous rate 
encodes the parameters of interest, namely arm velocity or target 
location. 

The variation of the rate at which a neuron produces spikes as 
a function of some external parameter is known as its "tuning." In 
some cases of interest, the parameter may represent a system state 
variable, for example a planned target. In these cases, the tuning 
is constant over some period of interest, and the decoding prob- 

lem reduces to estimating the constant variable of interest from an 
observed time series of spikes. Alternatively, the tuning may vary 
with time, as, for example, when it is correlated with movement 
forces. In this case, the decoding problem is to estimate the time 
varying movement that was to be generated by the neural signal. 

The tuning of the subclass of neurons that are involved in plan- 
ning movements appears to be roughly constant over an interval 
during which the subject prepares to move. While the tuning of 
plan neurons has not been as extensively investigated as that of 
movement neurons (described below), it has been shown that the 
tuning varies with direction and extent of movement (171, 181). For 
simplicity, we model the tuning as Gaussian, where the firing of 
the neuron decreases radially from a preferred location. The func- 
tional form is given as 

(5) 
) fplanner(Xf) = TpianXmaz exp ( - b f  - %;few=d11' 

where fplanner is the mean of the Poisson process'over the dura- 
tion of the plan interval Tplan. A,,, specifies the maximum firing 
rate of the neurons, U the standard deviation of the tuning, and 
upreferred the location of maximal firing. It is interesting to note 
that. unlike the other parameters, which describe biological phe- 
nomena, the duration of the plan interval is variable at the system 
level. Appropriate assumptions allow A,,, and U to be specified 
for our simulations - the same values are taken for every neuron 
in our population; U is randomly chosen within the workspace for 
each neuron. 
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The tuning of motor cortical neurons is a matter of some con- 
troversy among researchers in the field. It has been argued that 
these neurons fire proportionally to many variables, including hand 
velocity, hand force, and muscle forces within the arm [9]. How- 
ever, under many circumstances, observed firing rates vary with 
the cosine of the angle between hand velocity and some preferred 
direction. The rates also scale linearly with hand speed. This 
model for peri-movement neural activity is often dubbed "cosine- 
tuning" [lo]. Note that unlike the plan neurons, the firing of the 
peri-movement neurons is time-varying. After digital sampling, 
the mathematical representation of the sampled Poisson process 
mean, fmover, is 

0.5 

0.4 - 
c ;s 0.3 
9 E 0.2 
'6 

0.1 

0 -  

L Î \ 
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where A, is the time quantization, Amin specifies the minimum 
firing and x(xf, n) is the average velocity of the trajectory over 
[nA,, (n + l)At),  as given by the time derivative of Equation 
(1). Finally, &preferred is a unit vector in the preferred motion 
direction of the neuron; this is the only parameter that is varied 
on a per neuron basis for peri-movement neurons. Studies of ped- 
movement neural activity in the motor cortex have shown that the 
directional tuning can be better modeled with more complex func- 
tional forms [ 111, but cosine tuning appears to capture much of the 
complexity. 

3. DECODING 

3.1. Prior Approaches 

Previous work in decoding the neural activity associated with arm 
movements has focused primarily on the peri-movement neural 
signals. Several approaches have been taken; the most popular 

binations of the observed firing of the neurons during windows in 
time [2]. For comparison with the algorithm presented here, we 
use the minimum mean-square error filter derived from the pre- 
ferred directions of the peri-movement neurons. If one rewrites 
Equation (6) for neuron i as 

ones estimate the velocity (or position) of the arm from affine com- 

fi(n) = A& . ~ ( n )  + B (7) 
then, given the observed firing of N neurons concatenated into a 
column vector f ,  the standard linear unbiased estimator for v (the 
time derivative of Equation 1) is given by 

(8) 
1 
A 

= -(ETE)-'ET(f - B) 

where E is a matrix formed from the concatenation of the pre- 
ferred directions of the neurons. The trajectory of the arm can be 
reconstructed by summing the estimated velocities. A strength and 
weakness of this type of algorithm is that it is agnostic to stereo- 
typing of arm movements, such as those observed in nature and 
described above. Therefore, it generates an estimate based only on 
the currently observed (or in more complicated versions, nearby) 
samples of data. 

For plan activity one promising sample-based algorithm is the 
"point-process" filter [12]. This algorithm closely resembles the 
philosophy embodied in the well-known Kalman filtering frame- 
work. The point-process filter uses a recursive algorithm, with 
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Fig. 2. Neural plan activity imposes an a priori distribution on 
movement trajectory. Three movement trajectories, as  shown in 
Figure 1, appear to the left. Neural plan activity can be used to 
compute a probability distribution function for where the reach 
will end (curve to the right). The probability distribution is maxi- 
mum for a 0.25 meter rightward reach, thus at each time step, the 
point along the trajectory marked 0.25 m is more likely to be cor- 
rect than the points corresponding to that time step on the other 
two trajectories. 

procedures similar to the Kalman time and measurement updates, 
to incorporate the last sample estimate with the spike data from 
the current time point. In this particular case, the time update is 
tied to a model in which the next movement increment is stochas- 
tically distributed as a 2-dimensional Gaussian centered at the past 
estimate. Furthermore, the measurement update takes into account 
the point-process nature of the Poisson model of the neurons. This 
filter design is derived for Gaussian tuned neurons: hence, we have 
studied its utility in the plan period. For more summary informa- 
tion regarding this approach, please see the Appendix. 

Additional sample-based strategies for Gaussian neural activ- 
ity have been investigated including non-linear (Bayesian, neural 
network based, etc.) sample-based decoders, which in some cases 
perform better than the linear ones. One comprehensive review 
of linear filters and non-linear maximum likelihood techniques is 
found in [13]. 

3.2. Maximum Likelihood 

The previous observation that certain classes of movements are 
stereotyped suggests that greater accuracy may be achieved by 
holistically treating the neural firing as a temporal sequence of 
values specified by the endpoint of the movement rather than iso- 
lated samples. For peri-movement neurons, we can write the log- 
likelihood of arm position at any time as 

where kmOver,j is the number of spikes observed from peri- 
movement cell j and p ( .  . .) is found by substituting Equation (6) 
into (4). Due to the assumption that endpoints fully specify trajec- 
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tones, the maximum likelihood estimate is 

kest (n) = x argmax L L ( x f ,  n) , nAt Lf [ I ) 
where x(xf, t ) ,  the trajectory inverse function that maps from an 
endpoint to the point along the trajectory at time t, is found in 
Equation (1). Equations (9) and (10) illustrate that the estimate 
of the current arm position is generated by evaluating which of a 
family of arm trajectories - indexed by the movement endpoint - 
best fit the current data, and then choosing the current position of 
that trajectory for the current estimate. 

Furthermore, if the data presented to the decoding system is 
composed of both plan and peri-movement neural activity, the in- 
tegration of the plan activity is seamless. As illustrated in Figure 2, 
because of our stereotypical movement assumptions, plan activity 
(right panel), which is tuned for the endpoint of a movement, ef- 
fects an a priori distribution on the possible trajectories (left panel) 
that may be decoded from peri-movement neural activity. The new 
log likelihood function is 

 full (xf, n) = log n P(kplanraer,i lxf) + LLmover (1 1) L P  i = l  1 
where kplanner,i is the number of spikes observed from plan cell i 
and the likelihood surface corresponding to this neural activity has 
been added to the log-likelihood of Equation (9). To evaluate the 
maximum likelihood, Equation (1 1) is substituted into (10). 

By using small time windows, the analysis can be simplified. 
In the short interval limit, a Poisson process becomes a Bernoulli 
process, i.e. produces only zero or one as an outcome. Inserting the 
probability distribution in this case yields the following likelihood 
function. 

L L ( X f ,  t )  = c 
P 

+ (ki log [ fp lanner , i (~f ) ]  - fplanner,i(Xf)) 
i = l  

n M  

+ T;: (w) log [ f m o u e r , j ( ~ f , ~ ) ~  - fmover , j (Xf ,T))  
r=1 j=1 

(12) 

where for neuron i, ki is the number of spikes observed, and fi 

is the tuning as a function of target location (given in Equations 
(5) and (6)). I is an indicator function for the firing of a cell, and 
P and M are the numbers of plan and peri-movement neurons, 
respectively. Because there is no closed form solution to this max- 
imization problem, the actual solution is approximated in our sim- 
ulations through an exhaustive search through discretized space. 

4. RESULTS 

4.1. Simulation Architecture 

Neural signals were generated for movements to targets chosen 
at random in a unit square (arbitrary units consistent throughout 
simulations) centered on zero as in Figure 3. As discussed above, 
discretizing the number of potential targets into a grid of endpoints 
allows for simplified calculation of the maximum likelihood. As 
decoding errors decrease, the estimated endpoints begin to snap to 
the grid, causing an abnormal acceleration in the performance of 
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Fig. 3. Workspace used in computer simulations. Reaching arm 
movements were simulated from the center of the workspace to 
each of the 1600 possible endpoints (array of points). The m o w  
depicts a rightward and slightly upward reach. The workspace is 
square and is one arbitrary unit (a.u.) on a side. All distance pa- 
rameters are consistently measured against this unit. A plan neuron 
2-dimensional Gaussian receptive field centered at 0.3 a.u. to the 
right and is shown as a family of iso-intensity rings. The cosine 
tuning of a peri-movement neuron, centered in the workspace with 
a rightward preferred direction, is also shown (solid line). Note 
that the plan neuron receptive field is drawn to scale while only 
the shape, not size, of the peri-move neuron movement field has 
meaning since arm movement velocity modulates the response. 

the algorithm. For most data in the study, we avoided this issue by 
utilizing a grid of 1600 points. Neuron parameters (e.g. preferred 
locations for plan neurons. preferred directions for peri-movement 
neurons) were randomized with the decoding process typically re- 
peated over at least 20 sets. For each set of parameters. at least 200 
random targets were typically selected. Reaches to these endpoints 
were constructed by Equations (1) and (2) where the smoothness 
parameter, S ,  was chosen such that a reach to the farthest target in 
the grid took 0.5 seconds. Random neural firing data were gener- 
ated with a time quantization of 1 millisecond using the methods 
and probability distributions described previously. 

4.2. Simulation Results 

For unbiased estimators, the variances of estimates from indepen- 
dent observations add inversely. In this particular case, one can 
think of each neuron as providing an independent observation. 
Thus, in the biologically plausible range of parameters. we would 
expect an error model such as 
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Fig. 4. Decoded trajectory error as a function of the number of 
plan neurons. At least 100 random endpoints were chosen for each 
of at least 20 randomly parameterized ensembles of neurons (o = 
0.2 a.u., A,,, = 100 and Amin = 10 spikedsecond, consistently 
throughout this study). The dotted line depicts a fit of the many 
neuron limit of system performance. The thin line shows the per- 
formance of a point process filter on the same data (random walk 
variance = 0.001 a.u.'). 

where Nplan and N,,,, are the number of plan neurons and peri- 
movement neurons, respectively. and ogIan and $,,,,e represent 
the contribution of a single neuron to the mean square estimation 
error. The find term represents the non-linear portion of the er- 
ror (discussed below). It can be shown that the variance of the 
maximum-likelihood estimate of the parameter of a Poisson pro- 
cess varies inversely with the length of the estimation window [14]. 
Thus, it is expected that the single-neuron variance of plan neurons 
will be inversely proportional to the duration of plan interval. 

For small numbers of neurons chosen randomly, the typical 
distribution of neurons in the workspace (preferred locations or di- 
rections) will be non-uniform (e.g. the preferred directions will be 
closer to each other than to orthogonal, or the preferred locations 
will be unbalanced in workspace coverage). The result is higher 
than expected error. This is the source of the C(. . .) term in Equa- 
tion (13). The performance of the prosthetic system with limited 
numbers of neurons is of special interest, since current instrumen- 
tation only permits interfacing with small neural populations (10s- 
100s of cells). Furthermore, the performance of systems controlled 
by even small numbers of neuron may be further enhanced by the 
brain's ability to adapt through time [I]. 

Figure 4 shows simulation results as the number of plan neu- 
rons in the system increases. The error metric is the trajectory 
error measured as  the square distance between estimated and ac- 
tual hand positions averaged over the movement time. Notice that 
the error performance is well approximated by Equation (13). not 
only by decreasing inversely to neuron count, but also by scaling 
inversely with the length of the plan interval. If we take the value 
for 200 neurons as characteristic of the many neuron limit, the data 
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Fig. 5. Decoded trajectory error as  a function of the number 
of peri-movement neurons. The performance of the maximum 
likelihood decoder is compared with the theoretical bound, a lin- 
ear filter, and a system in which the decoder uses not only peri- 
movement neural activity, but also information from 10 plan neu- 
rons. 

suggest that oZlan is approximately 0.0025 a.u.' sec - i.e. 0.25 
a.u.2 for 10 msec plan or 0.025 a.u.2 for 100 msec plan. We found 
that, in the many neuron limit, this value was inversely related to 
the tuning width of the neurons. For example, for a standard devia- 
tion of 0.4 a.u.', twice that used in our simulations. the per-neuron 
variance was measured as 0.0051 a x 2  sec. For a standard devia- 
tion of 0.1 a m 2 ,  the per-neuron variance was measured as  0.0021 
a.w2 sec. 

The plan interval parameter (Tplan in Equation (5)) is impor- 
tant to system designers since it can be used to reduce the contribu- 
tion of the planner neurons to overall estimator variance. As seen 
in Equation (13). the planner population variance can be reduced in 
two ways: by decreasing oElan or increasing the number of neu- 
rons (Nplan). The former can be achieved by increasing Tplan; 
training the user to extend the period during which a movement is 
planned. The number of neurons interfaced cannot be easily in- 
creased after a fixed number of electrodes have been implanted in 
the subject. 

Figure 5 depicts the dependence of trajectory error on the num- 
ber of peri-movement neurons. As expected, the inverse relation- 
ship of Equation (13) holds. In this case, oLove is approximately 
0.076 a.u.2. Thus, in the limit of many neurons, the information 
gained from a plan neuron with a plan interval of about 30 ms 
is equivalent to that gained from a peri-movement neuron. Also 
shown is a plot of the performance of a system in which the activ- 
ity from 5 plan neurons is integrated with peri-movement activity. 
As expected, for small numbers of peri-movement neurons, trajec- 
tory error is significantly reduced by the addition of plan activity. 

A key difference between the error performance of plan- and 
peri-movement-based decoding is in their convergence character- 
istics. The C(. . .) term of Equation (13) represents the greater 
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Fig. 6. Plan- and peri-movement-only decoder performance. No- 
tice different error convergence characteristics of decoders using 
only plan or peri-movement neural activity. In the limit, only neu- 
ron parameters and the number of neurons matter. 

error that occurs when there are only a small number of neurons. 
As the number of plan and peri- movement neurons increases, 
C(. . .) tends to zero. As seen in Figure 5, in peri-movement 
neurons, when there are more than two, each neuron contributes 
nearly its full amount of information. Hence, the error for the peri- 
movement neurons is linear throughout nearly the whole regime of 
neuron densities. 

The error convergence of plan neurons is closely related to 
the size of workspace area in which the neurons provide signif- 
icant signal differentiation. Thus, unlike the broadly tuned peri- 
movement neurons, for the tuning widths used in this study, the 
system error does not converge immediately to its many neuron 
limit. However, this effect is significantly affected by the tun- 
ing width of the neurons. Intuitively, neurons with wide tuning 
are less specific, hence their limiting variance is higher than those 
with narrower tuning. For the same reason, for smaller numbers of 
neurons, those with wide tuning cover more of the workspace, and 
thus the error converges to the many neuron limit more quickly. 
Comparing the limiting cases, for infinitely wide tuning the num- 
ber of neurons has no effect on the error; for infinitely narrow tun- 
ing, an infinite number of neurons is needed to decode reaches in 
a continuous workspace. 

Figure 6 depicts three regimes of operation for systems com- 
posed of plan and peri-movement neurons. When there are few 
neurons, peri-movement neurons provide more per-neuron esti- 
mating accuracy than plan neurons. This is regime 1 - roughly 
1-10 neurons in Figure 6. When there are a large number of neu- 
rons, both the peri-movement and plan neurons will cover the en- 
tire workspace well. Thus, comparison between the per-neuron 
variance of plan and peri-movement neurons can be done solely 
on the basis of system parameters. As depicted, a system based 
only on plan or peri-movement neurons will provide higher de- 
coder accuracy depending on whether nplan or gmove is lower. 
This is regime 3 - roughly 10 or more neurons in Figure 6. When 
the per-neuron variances are comparable (regime 2 - around 10 
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Fig. 7. ML and linear filter decoder performance with perturbed 
movements. Trajectories were perturbed in the velocity domain by 
one cycle of a sine wave in one of four randomly chosen directions. 
Maximum perturbation is 25% of the maximum velocity. 

neurons in Figure 6), the exact distribution of neuron centers and 
preferred directions will heavily influence system performance. 

In practice, arm movements do not exactly follow prescribed 
paths. In fact, ballistic trajectories (e.g. reaching for a glass) are 
often modified to avoid obstacles. Thus, to test the significance of 
the assumption of stereotyped trajectories, the performance of the 
system was measured in an environment where arm movements 
occurred close to the same path, but were perturbed by a sinusoidal 
velocity term in a random orientation. Figure 7 compares the per- 
formance of the linear filter with the maximum likelihood model 
in this situation. As might be expected, the maximum likelihood 
estimate, which is constrained to selecting from a family of tra- 
jectories that does not contain the real one, has a rather significant 
error floor. Future work will seek to combine the advantages of 
maximum likelihood (or point-process) for plan periods with the 
flexibility that linear filters provide for movement estimation. 

Furthermore, it is quite possible that an individual cannot, or 
does not, steadily plan on a stationary target for the entire plan 
period. For example, one can imagine a scenario where a subject 
is tracking a dancing target before deciding to reach to it. The 
maximum likelihood algorithm will suffer in performance since it 
inherently assumes that the plan will be static in its sequence based 
architecture. On the other hand, a sample based approach can po- 
tentially perform better in this arena. To simulate this type of vari- 
ation, the plan was modeled as the baseline firing rate previously 
described along with a sinusoidal spatial perturbation component. 
Figure 8 compares the performance of the point-process filter with 
the maximum likelihood under this condition. As expected, with 
tests of simple oscillatory plans, the point-process filter produces 
higher accuracy trajectories than the maximum likelihood plan- 
ning filter. In this case, the maximum likelihood decoder has an 
error floor related to the relationship between the size of the plan 
interval and the frequency of the variation. One benefit of the point 
process filter structure is that it produces an estimate variance that 
could be used to generate a likelihood surface in a similar vein to 
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Fig. 8. ML and point-process filter decoder performance with dy- 
namic plan activity. The planned endpoint was perturbed in a ran- 
dom direction by a cosine wave biased so that the actual endpoint 
occurred at the minimum of the perturbation, fixed to occur at the 
end of the plan period. Results are given for a perturbation with 
magnitude 0.4 a.u., and Frequency 4 Hz. 

the maximum likelihood estimate. This potential avenue for inte- 
gration with peri-movement data merits further investigation. 

5. CONCLUSION 

We have presented a mathematical framework for improved de- 
coding of peri-movement neural activity in the case of stereotyped 
arm movements. It also enables plan neural activity, related to tar- 
get location, to be integrated in such a way that it improves system 
performance along the trajectory of arm movements. A maximum 
likelihood decoder has been simulated and its performance as a 
function of the number of neurons in the system was presented. 
Decoder system performance has also been discussed as a func- 
tion of system parameters such as the duration of the plan interval 
and the tuning width of plan neurons. Finally, the simulation as- 
sumptions of fully stereotyped movements and static plan activity 
were relaxed and the performance of the maximum likelihood de- 
coder was compared to previous methods in less constrained cir- 
cumstances. 

One model of movement control in the brain is that peri- 
movement activity results from optimizing potential trajectories 
subject to reaching the location encoded by the plan activity. If 
the only movements considered are those that follow stereotypi- 
cal trajectories, the decoding system we have presented hitherto 
decreases error by reproducing this optimization external to the 
brain. Though movements in nature actually display a much richer 
variety than those studied in this work, the framework presented 
can be expanded as the control algorithms utilized by the brain are 
further understood. Thus, by combining plan and peri-movement 
neural activity as presented here, it should be possible to use these 
signals regardless of activity type, to more accurately estimate arm 
movements and hereby control prosthetic devices with fewer im- 
planted electrodes. 
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X-mrrdinale d arm movement 8. APPENDIX 

The derivation of the point-process filter is covered in detail by 
[12]. One of the main advantages of this filter is that it produces an 
estimate of the plan position as well as a variance in that estimate. 
The error in the estimate can be approximated as Gaussian dis- 
tributed around the estimated position. The Gaussian distribution 
can then be substituted for the maximum likelihood surface that 
would have been originally produced at the end of the plan period. 
Equations (14)-(16) provide a flavor for the one-step prediction 
phase of the point-process filter (a la the Kalman time update). The 
posterior mode k ( t k l t k )  and posterior variance W ( t k l t k )  equa- 
tions - analogous to the Kalman measurement update - are not 
included here. These and further derivations can be found in [IZ].  

Z ( t k )  - Z @ k - I )  N(O, wz(Ak)); (14) 
k ( t k l t k - 1 )  = e ( t k - - 1 l t k - 1 ) ;  (15) 

W ( t k l t k - I )  = Wz(Ak) W(tk-1ltk-1); (16) 

The point-process filter relies on a continuity assumption 
(Equation (14)) so as to constrain the magnitude of each spatial 
increment. This continuity constraint can be thought of as the dis- 
tribution of velocities at which a subject can move his plan. There 
are very little data on the rate at which plans in cerebral cortex can 
change. However, it is possible to make estimates of this quantity 
using data from [7], specifically the slew rate of the planning neu- 
rons. In this way, there is an attempt to (loosely) tie a biological 
variable to the algorithm. Of course, further physiological experi- 
ments along this path could be rather enlightening. 
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Fig. 9. Tracking Sinusoidal Dynamic Plan (Point-Process Filter) 

Lastly, Figure 9 shows one observation of how the point- 
process filter might estimate the dynamic endpoint during a sin- 
gle plan period. The plan is oscillating quickly and widely over a 
large distance and this algorithm performs reasonably in tracking 
the change. 
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